Self-assembly of colloidal particles into strings in a homogeneous external electric or magnetic field.
نویسندگان
چکیده
Colloidal particles with a dielectric constant (magnetic susceptibility) mismatch with the surrounding solvent acquire a dipole moment in a homogeneous external electric (magnetic) field. The resulting dipolar interactions can lead to aggregation of the particles into string-like clusters. Recently, several methods have been developed to make these structures permanent. However, especially when multiple particle sizes and/or more complex shapes than single spheres are used, the parameter space for these experiments is enormous. We therefore use Monte Carlo simulations to investigate the structure of the self-assembled string-like aggregates in binary mixtures of dipolar hard and charged spheres, as well as dipolar hard asymmetric dumbbells. Binary mixtures of spheres aggregate in different types of clusters depending on the size ratio of the spheres. For highly asymmetric systems, the small spheres form ring-like and flame-like clusters around strings of large spheres, while for size ratios closer to 1, alternating strings of both large and small spheres are observed. For asymmetric dumbbells, we investigate both the effect of size ratio and dipole moment ratio, leading to a large variety of cluster shapes, including chiral clusters.
منابع مشابه
Hierarchical self-assembly of colloidal magnetic particles into reconfigurable spherical structures.
Colloidal self-assembly has enormous potential as a bottom-up means of structure fabrication. Here we demonstrate hierarchical self-assembly of rationally designed charge-stabilised colloidal magnetic particles into ground state structures that are topologically equivalent to a snub cube and a snub dodecahedron, the only two chiral Archimedean solids, for size-selected clusters. These spherical...
متن کاملMultidirectional colloidal assembly in concurrent electric and magnetic fields.
Dipolar interactions between nano- and micron sized colloids lead to their assembly into domains with well-defined local order. The particles with a single dipole induced by an external field assemble into linear chains and clusters. However, to achieve the formation of multidirectionally organized nano- or microassemblies with tunable physical characteristics, more sophisticated interaction to...
متن کاملDirected Self-Assembly of Polarizable Ellipsoids in an External Electric Field
The interplay between shape anisotropy and directed long-range interactions enables the self-assembly of complex colloidal structures. As a recent highlight, ellipsoidal particles polarized in an external electric field were observed to associate into well-defined tubular structures. In this study, we systematically investigate such directed self-assembly using Monte Carlo simulations of a two-...
متن کاملSelf-assembly of colloidal magnetic particles: energy landscapes and structural transitions.
The self-assembly of colloidal magnetic particles is of particular interest for the rich variety of structures it produces and the potential for these systems to be reconfigurable. In the present study we characterised the structures for clusters of N spherical colloidal magnetic particles in the presence of short-ranged attractive depletion interactions up to N = 50. The morphologies that we o...
متن کاملColloidal polymers with controlled sequence and branching constructed from magnetic field assembled nanoparticles.
The assembly of nanoparticles into polymer-like architectures is challenging and usually requires highly defined colloidal building blocks. Here, we show that the broad size-distribution of a simple dispersion of magnetic nanocolloids can be exploited to obtain various polymer-like architectures. The particles are assembled under an external magnetic field and permanently linked by thermal sint...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of physics. Condensed matter : an Institute of Physics journal
دوره 24 46 شماره
صفحات -
تاریخ انتشار 2012